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Abstract
f..l 

The fuzzy integral has been shown to be an effective tool for the aggregation of evidence in

decision making. Of primary importance in the development of a fuzzy integral pattern

recognition algorithm is the choice (construction) of the measure which embodies the

importance of subsets of sources of evidence. Sugeno fuzzy measures have received the most

attention due to the recursive nature of the fabrication of the measure on nested sequences of

subsets. Possibility measures exhibit an even simpler generation capability, but usually

require that one of the sources of information possess complete credibility. In real

applications, such normalization may not be possible, or even desirable. In this report both

the theory and a decision making algorithm for a variation of the fuzzy integral are presented.

This integral is based on a possibility measure where it is not required that the measure of the

universe be unity. A training algorithm for the possibility densities in a pattern recognition

application is also presented with the results demonstrated on the shutt.le-earth-space training

and testing images.

I. Introduction

Decision making is a basic problem in science, engineering, and even in daily life. There

are often conflicting requirements of low error rates and minimum computation time to

reduce the cost. The purpose of this paper is to propose the concept of possibility expectation

via the possibility integral as a decision making scheme, which can be used to construct

optimal decision making algorithms. A possibility expectation is a value of nonlinear

integration of two pieces of information, namely, an evidence function h(x) and a possibility

measure P_(-). A possibility measure is a monotonic set function with the property that the

measure of the universe X can be less than or equal to unity.

An example of possibility expectation is the following: In the court room, although the

witnesses for both the defendant and plaintiff promise that they will tell the truth, the judge

still needs to assign the grade of credibility-(possibilitydensities) to each person to evaluate

what the person says (evidence). The Judge will integrate what each group of wltnesses said with

his belief in that group's credibility (posslbflity measure). Then the Judge makes his decision
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(posslbili_ ex-pectation}.

In multicriteria decision making, as can be found in most pattern recognition problems.

the value of each source of information (and thus all subsets of Sources) toward each
o

alternative can be different. For example, "greenness" may be a very important feature for

recognizing certain types of trees in an image: whereas it may be quite unimportant as a feature

for a roof of a building. This difference in the importance or credibility of subsets of

information sources will be encoded m a possibility measure. The degree to which a given

image region is green, to continue the example, is objective evidence supplied by the

information source. After collecting all such objective information, it is the job of the decision

making algorithm to fuse the objective evidence together with the worth of the sources. In our

methodology, this will be accomplished by utilizing the possibility integral, a variation of the

fuzzy integral [ill

The particular possibility measures which we describe generalize fuzzy measures In that it

Is not required that the measure of the entire domain of discourse be one. In a pattern

recognition problem, it may not be possible, or may not be desirable to force one of the sources

of information to have "perfect credibility". By relaxing this requirement, not only do we

match real situations better, we also provide the opportunity to create better decision making

algorithms, as we shall see later.

For a pattern recognition environment, a method to learn the possibility densities (values

upon which the measure is generated) from training data is given. The results of the

subsequent algorithm are used to segment a shuttle from the earth and space backgroud.

2. Possibility Measures and Possibility Integral

Definition 2.1 A set function Pos(.): 2X -->[0, I] is called a possibility measure ff it satisfies the

following properties:

{I) PosI_ = 0, _ < I.

(2) I,fA, B_ 2Xand A c B. then Pos(A) < Pos(B),

(3) Pos( ,-,_A_ ) = sup [ Pos(/_ )l.
_[l,a]

Note: If X is finite, a possibility measure is not a fuzzy measure when Pos(X) < I; it is the

same as fuzzy measure only when Pos(X) = I. If X is infinite, a possibility measure is not a fuzzy

measure in general [2]. Purl and Ralescu [3] give two counterexamples which show that, even in

"nice" cases, a possibility measure is not a fuzzy measure in the infinite case.
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Definition 2.2 Let X = {xj l j = 1..... n }be a finite set and let Pos be a possibility measure on 2x.

The set {pJ = Pos({xj })I j = I ..... n ] is called the set of possibility densities for Pos.

By definition of the possibility measure, it is clear that the measure of any subset A of X

can be generated by

Po_A)= max(_ ),
xj_^

and hence, a possibility measure is easily generated by its densities.

We note that possibility theory can be induced not only from the nested bodies of evidence

within the Dempster-Shafer theory [4], but also from the fuzzy sets introduced by Zadeh [6]. A

fuzzy set F is a set whose elements are characterized by the membership grade function

pF(x): X --->[0, l]. A value of PF(X) expresses the grade of membership that an element x _ X

belongs to the fuzzy subset F of X. Let _F(X) = PF(X) be a possibility distribution induced by a

fuzzy set F. In general, a possibility distribution is thought of as an elastic restriction on the

values within a domain of discourse which a fuzzy variable may assume [5]. The fuzzy set F

provides the meaning of the restriction. A possibility measure is defined as

Pos(A) = sup[ _F(X) ] for all A_ 2X. This relationship holds also for non-normal fuzzy sets [6].
x_A

Although a fuzzy set and a possibility distribution have a common mathematical expression,

the underlying concepts are different [5].

Our possibility measures are non-normallzed generalizations of what are referred to as S-

decomposable measures [7, 8], these being a class of fuzzy measures which are easily

computable.

w

Definition 2.3 Let h(x) be a functlon such that h: X --> [0, I], and let Pos(-) be a possibility

measure of 2X . The possibility integral or the possibility expectation of h0c) with respect to

Pos(.) is defined as

_, h(x) o Pos(') = sup [ a A _,_ I,
cte [0.1]

where,a_x= {x I hLx) >a}.

When X = {xi I I = 1..... n ) is finite, ff we reorder X such that h(x I) 2 h{x2) >... > hLxn),

then the possibility integral can be written as

_x h(x) o Pos(-)

¢.

= _/1 h(xj)APos(Aj)], where_ ={Xl,X, 2 ..... _}.
j=l

: . . •..... , .- . . . • , .... . .



The rationale of the possibility, expectation is to find the source within the universe where

both the Lrd'ormation-value hIxj ) and the possibility measure Pos{A l ) are compaUbly large, that

is, where the feasibility of the data and the rellabflity of a subset of sources is jointly optimal.

The fuzzy integral developed by Sugeno [1] has the same formuIation with the exception

that a fuzzy measure is used in lieu of the possibility measure. One of the advantages of the

possibility integral is that the measures Pos(Aj _ are easily calculated from the densities by the

recursh'e relationship

PoS(Al ) = Pos({xl} ) = pl;

Pos%); Po%_l % =
In contrast, for Sugeno fuzzy measure g%with the fuzzy densities { gl ..... gn }, this

recursh, e definition becomes

g%{Al )=g%{{Xl} ) =gl;

gg Aj ) = ggAj_ _ _J {xj}) = gg %.i) + gJ÷ _ gJg_{ Aj_ _1,

where k __.-I [I, 10. ii]. The value of %must be calculated from the equation

fi ( 1 +kgi) -- 1+%, [11.

ffone is going to try to learn a measure (iteratively) from training data, the amount of

computations necessary to learn a possibility measure, and then evaluate its possibility

integral is considerably less than that required for a Sugeno fuzzy measure and its fuzzy

integral.

For a multiclass pattem recognition problem (or any multicriterla decision making

problem), the set X represents sources of information (criteria). Each class (alternative) will

have its own evidence function hi:X -->[0, I] to assess the feasibility that the decision is class i

(alternative i) from the standpoint of each individual source, xj. Also, each class will have its

own possibility measure Pos I which dete_nes the wo_ of _ Subsets of sources in deciding

that a particular object belongs to class I. Finally., the collection of possibility integrals

el = _x hi(x) o PosI('),

gives a cla.ss-Lnd!vidualized "fusion" of the direct evidence with the worth of that evidence. A

final crisp decision can be made from the possibility expectations (integral values), for

example, pick the class corresponding to the ma._mum possibility expectation. Alternately,

these expectation values can used as confidences for later processing.

3. Properties tiThe PcssibUity Integral

Several interesting properties of the possibility integral are proved in [1 1l. Of particular
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interest to the algorithm presented in the next section are the following two results.

Theorem 3.1 0 <_ _'- h{x) o Po6(,) <_ Pos(X).
JX

w

Theccem 3.2 If hl(x)<h2{x) Vx:

_x hl(X)°P°s(') < _x h2(x)°P°s(')' ifPcr,(_ > hl(X) for all x,

_x hl(x)°Pos(') = _x h2(x)°P°s(')' ifPos(X) < hl(X) forallx.
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4, Decision Rule and Training Algorithm

In the procedure given below, we consider a two class pattern recognition problem, or a two

alternative decision process. The approach can be extended directly to multiple classes, but

from the particular structure of the training mechanism, it would be more appropriate to view

it as a series of two class problems, either as pairwlse distinctions, or as each class against all

of the remaining classes. Since the possibility integral algorithm dose not create geometric

decision boundaries in feature spaces (as, for example, Bayes Decision Theory), the second

approach is reasonable and contains fewer subdecisions which need to be made to extend this

to multiple classes.

The actual decision algorithm utilizes the nature of the possibility integral to split the

input objects (as represented by the evidence function h(x) ) into four groups to reduce the

computational load• The first two groups deal with the case where the strength of all objective

evidence for one class outweighs that for the other. In most cases, this corresponds to the fact

that, in a pattern recognition problem, a majority of the data are easily distinguished (being

quite typical of their class). Decision rules 1 and 2 below are a consequent of Theorem 3.2

assuming that the possibility measures for both classes in this case are identical. Of course,

there are problems where the objective evidence for one class can dominate that for the other

class, and yet, the object belongs to the later. This could happen if the worth of the source, i.e.,

the densities, are vastly different between classes. During training, this condition is

monitored, and if the training data produce such outcomes, the first two rules are abandoned,

forcing all training samples to be "conflict data".

The initial definition of "conflict" is an object where the evidence function for one class

does not dominate that of the other. In this case, we split the training data (and also the

unknown test objects) into two subgroups b_d on the class receiving the highest degree of

support from any source. For each group, two possibility measures are formed which minimize

the total misclass_cation of the training data. The purpose of partitioning the data in this

!



manner is to reduce the size of the training set since our initial training scheme is

a complete search through a quantized set of all pairs of density functions. To reduce further
= = ± _=

the amount of computations, we note that the value of a possib_ty integral cannot be larger

than the maximum of the function being integrated. This fact allows us to restrict the range of

density values to be no larger than the maximum evidential support in the training set.

(Reducing the training sets gives more opportunity to invoke this restriction). Optimal pairs of

density functions (in term of minimal error rate on the training data) are formed and then used

in the testing cycle. There are 4 possibility measures generated during training - one from each

class in each of the two subgroups of conflict data.

The decision algorithm is summarized-below.

BEGIN

FOR each feature data vector DO obtain hl(x j ) for a_j and h2(x j ) for all j;

(I) IF hl(X j ) > h2(x j) for allj, THEN the feature data vector belongs to class I.

(2) ELSE IF h I (xj) < h2(x j ) for all J, THEN the feature data vector belongs to class 2.

(31 ELSE

n

If Vhl(X j) _> Vh2(xjl. Then
j=] j=]

_/[h2(x jlA PO_I2(_I]el= J=,_/lhl(X j) A POSll(_l]. e.2= _,

el= _/[hl(X j) A Pos21(Aj)],
j=]

End 
e2= _/[h2(x j) A Pos22(_)]

j=!

If e I > e 2 , Then the feature data vector belongs to class I,

Else the the feature data vector belongs to class 2.

End If

ENDIF

END FOR

END .

5. Experimental Results

Two shuttle-earth-space intensity images were.... used in the experiment, in which all the

data from the two images were treated as "conflict data' and hence only the third decision rule

applies.

The training in, age is shown in Fig. 5.1 and the test image is shown in Fig. 5.5. Three

texture feature images (contrast, difference, and the entropy) were derived from the training
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and the test images respectively, i.e., three feature images for training and three feature images

for testing (For the de£mition of these features, please see section on membership generation

techniques in this report). -The three feature images, used for training the possibility densities,

are shown in Fig. 5.2. The three feature images used in testing are shown in Fig. 5.6.

The possibility distribution (or membership function) of each class in each feature, that

used to generate the evidential function h(x), is determined by using the possibilistic clustering

algorithm on the histograms of each class in each feature, which is described in another

section of this report.

While training, the possibility densities were determined with the "perceptron criterion"

(i.e., minimize the decision error) from the feature images in Fig. 5.2. The segmentation result

corresponding to the possibility measure(s) for the training image is shown in Fig. 5.3, in

which the shuttle and its background are clearly segmented, except that the shuttle body seems

disconnected. To improve the connection of the shuttle body, the possibility densities of the

shuttle were raised slightly, from which the segmentation result in Fig. 5.4 and the result in

Fig. 5.7 (for the test case) were obtained. These results can be improved quite easily with a

shrlnk-expand operation.
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6. Conclusion

In this paper, a decision making algorithm based on a variation of the fuzzy integral was

proposed. The possibility integral has a particularly simple generation capability. The

algorithm was run on the shuttle-earch-space images, reasonable good results were obtained.
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Fig 5.1 Intensity training image.
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Fig 5.2 (top left) Intensity-training image.
(top fight) Contrast feature image.
(bottom left) Difference feature image.
(bottom fight) Entropy feature image.
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Fig 5.3 Segmented imagel using the possibility integral algorithm.
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Fig 5.4 Segmented image2 using the possibility integral algorithm.
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Fig 5.5 Intensity testing image.
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Fig 5.6 (top left) Intensity testing hnage.
(_p fight) Conwast feature image.
Cootlom left) D_Terence feature image.
(bottom right) Entropy feature image.
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Fig 5.7 Segmented testing image using the possibility integral algorithm.
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Calculation of Membership Fon¢_iQn_
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Our work in this area has progressed nicely. We have designed and implemented a

new algorithm to generate membership values from a set of training data using a multi-layer

neural network. This is in addition to the progress we made in the transformation of

• "probability density functions" into possibility distributions for use in assigning

membership values to individual points as reported in the third quarter report.
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